FEATURES

8-Bit Resolution
No Missed Codes over Full Temperature Range
Fast Conversion Time: 15 $\mu \mathrm{s}$
Interfaces to μ P like RAM, ROM or Slow - Memory
Low Power Dissipation: 30mW
Ratiometric Capability
Single +5 V Supply
Low Cost
Internal Comparator and Clock Oscillator

GENERAL DESCRIPTION

AD7574 is a low-cost, 8 -bit $\mu \mathrm{P}$ compatible ADC which uses the successive-approximations technique to provide a conversion time of $15 \mu \mathrm{~s}$.
Designed to be operated as a memory mapped input device, the AD7574 can be interfaced like static RAM, ROM, or slow memory. Its $\overline{\mathrm{CS}}$ (decoded device address) and $\overline{\mathrm{RD}}$
($\overline{\text { READ }} / \overline{\text { WRITE }}$ control) inputs are available in all $\mu \mathrm{P}$ memory systems. These two inputs control all ADC operations such as starting conversion or reading data. The ADC output data bits use three-state logic, allowing direct connection to the $\mu \mathrm{P}$ data bus or system input port.
Internal clock, +5 V operation, on-board comparator and interface logic, as well as low power dissipation (30 mW) and fast conversion time make the AD7574 ideal for most ADC $/ \mu \mathrm{P}$ interface applications. Small size (18-pin DIP) and monolithic reliability will find wide use in avionics, instrumentation, and process automation applications.

ORDERING GUIDE

Model	Temperature Range	Differential Nonlinearity (LSB)	Package Option
AD7574JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 7 / 8$ max	$\mathrm{N}-24$
AD7574KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 3 / 4 \max$	$\mathrm{~N}-24$
AD7574AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 7 / 8 \max$	$\mathrm{Q}-24$
AD7574BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 3 / 4 \max$	$\mathrm{Q}-24$
AD7574SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 7 / 8 \max$	$\mathrm{Q}-24$
AD7574TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 3 / 4 \max$	$\mathrm{Q}-24$

${ }^{*} \mathrm{~N}=$ Plastic DIP; $\mathrm{Q}=$ Cerdip.

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

AD7574—SPECIFICATIONS

DC SPECIFICATIONS ($\mathrm{V}_{\text {DO }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=-10 \mathrm{~V}$, Unipolar Configuration, $\mathrm{R}_{\mathrm{CLK}}=180 \mathrm{~K} \Omega, \mathrm{C}_{\text {CLIK }}=100 \mathrm{PF}$, unless otherwise noted)

	Lim			
Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {min }}, \mathrm{T}_{\text {max }}{ }^{1}$	Units	Conditions/Comments
ACCURACY				
Resolution	8	8	Bits	
Relative Accuracy Error				
J, A, S Versions	$\pm 3 / 4$	$\pm 3 / 4$	LSB max	Relative Accuracy and Differential Nonlinearity are measured dynamically using the external clock circuit of Figure 7b.
K, B, T Versions	$\pm 1 / 2$	$\pm 1 / 2$	LSB max	
Differential Nonlinearity				Clock frequency is 500 kHz (conversion time $15 \mu \mathrm{~s}$).
J, A, S Versions	$\pm 7 / 8$	$\pm 7 / 8$	LSB max	
K, B, T Versions	$\pm 3 / 4$	$\pm 3 / 4$	LSB max	
Full Scale Error (Gain Error)				Full Scale Error is measured after calibrating out offset error. See Figure 8a and associated calibration procedure for offset. Max Full
J, A, S Versions	± 5	± 6.5	LSB max	
K, B, T Versions	± 3	± 4.5	LSB max	Scale change from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {min }}$ or $\mathrm{T}_{\text {max }}$ is $\pm 2 \mathrm{LSB}$.
Offset Error ${ }^{2}$				
J, A, S Versions	± 60	± 80	mV max	Maximum Offset change from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {min }}$ or $\mathrm{T}_{\text {max }}$ is $\pm 20 \mathrm{mV}$.
K, B, T Versions	± 30	± 50	$m V$ max	
Mismatch Between $\mathrm{B}_{\mathrm{OFS}}$ (Pin 3) and $A_{1 N}$ (Pin 4) Resistances ${ }^{3}$	± 1.5	± 1.5	\% max	
ANALOG INPUTS				
Input Resistance				
At $\mathrm{V}_{\text {ReF }}$ (Pin 2)	5/10/15	5/10/15	$k \Omega$ min/typ/max	
At $\mathrm{B}_{\text {OFS }}$ (Pin 3)	10/20/30	10/20/30	$k \Omega$ min/typ/max	
At $\mathrm{A}_{1 \mathrm{~N}}$ (Pin 4)	10/20/30	10/20/30	$k \Omega$ min/typ/max	
$\mathrm{V}_{\text {ReF }}$ (for Specified Performance)	-10	-10		$\pm 5 \%$ for specified transfer accuracy.
$\mathrm{V}_{\text {REF }}$ Range ${ }^{4}$	-5 to -15	-5 to -15	v	Degraded transfer accuracy.
Nominal Analog Input Range	0 to $+\mid V_{\text {PEF }}$			Degraded transfer accuracy.
Unipolar Mode			V	
Bipolar Mode	$-\left\|\mathbf{V}_{\mathbf{R E F}}\right\| \text { to }+\left\|\mathbf{V}_{\mathbf{R E F}}\right\|$		V	
LOGIC INPUTS				
$\overline{\mathrm{RD}}$ (Pin 15), $\overline{\mathrm{CS}}$ (Pin 16)				
$\mathrm{V}_{\text {INH }}$ Logic HIGH Input Voltage	+3.0	+3.0	V min	
$\mathrm{V}_{\text {INL }}$ Logic LOW input Voltage	+0.8	+0.8	V max	
$\mathrm{I}_{\mathbf{N}}$ Input Current	1	10	$\mu \mathrm{A}$ max	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{C}_{\text {IN }}$ Input Capacitance ${ }^{5}$	5	5	pF max	
CLK (Pin 17)				
$\mathrm{V}_{\text {INH }}$ Logic HIGH Input Voltage	+3.0	+3.0	V min	
$\mathrm{V}_{\text {INL }}$ Logic LOW Input Voltage	+0.4	+0.4	V max	
$\mathrm{I}_{\text {INH }}$ Logic HIGH Input Current	+2	+2	$\mathrm{mA}_{\max }$	During Conversion: $\mathrm{V}_{\text {IN(CLK) }} \geq \mathrm{V}_{\text {INH(CLK) }}$
$\mathrm{I}_{\text {INL }}$ Logic LOW Input Current	1	10	$\mu \mathrm{A}$ max	During Conversion $\mathrm{V}_{\mathrm{IN}(\mathrm{CLK})} \leq \mathrm{V}_{\mathrm{INL}(\mathrm{CLK})}$ (see circuit of Figure 7b if external clock operation is required).
LOGIC OUTPUTS				
V_{OH} Output HIGH Voltage	+4.0	+4.0	V min	$\mathrm{I}_{\text {SOURCE }}=40 \mu \mathrm{~A}$
V_{OL} Output LOW Voltage	+0.4	$+0.8$	$V_{\text {max }}$	$\mathrm{I}_{\mathrm{sINK}}=1.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{LKG}} \mathrm{DB}_{7}$ to DB_{0} Floating Stage Leakage	1	10	$\mu \mathrm{A}$ max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$
Floating State Output Capacitance $\left(\mathrm{DB}_{7} \text { to } \mathrm{DB}_{0}\right)^{5}$	Floating State Output Capacitance			
Output Code	$7 \quad$ Unipolar Binary, Offset Binary			See Figures 8a, 9a, 10a, and 8b, 9b, 10b.
POWER REQUIREMENTS				
V_{DD}				$\pm 5 \%$ for specified performance.
I_{DD} (STANDBY)	5	5	mA max	$\mathrm{A}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{ADC}$ in RESET condition.
$\mathrm{I}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ divide	d by $5 \mathrm{k} \Omega$		Conversion complete, prior to RESET.

NOTES
${ }^{1}$ Temperature ranges as follows: J, K, Versions, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; A, B Versions, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; S, T Versions; $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Typical offset temperature coefficient is $\pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
${ }^{3} \mathrm{R}_{\mathrm{BOFS}} / \mathrm{R}_{\mathrm{AIN}}$ mismatch causes transfer function rotation about positive Full Scale. The effect is an offset and a gain term when using the circuit of Figure 9 a .
${ }^{4}$ Typical value, not guaranteed or subject to test.
${ }^{5}$ Guaranteed bui not lested.
Specifications subject to change withour notice.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are Zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

AC SPECIFICATIONS $N_{0 p}=+5 V, C_{\text {tux }}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{RtIK}}=180 \mathrm{k} \Omega$ unless otherwise noted)

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to above maximum rating conditions for extended periods may affect device reliability.

TERMINOLOGY

RESOLUTION: Resolution is a measure of the nominal analog change required for a 1 -bit change in the A / D converter's digital output. While normally expressed in a number of bits, the analog resolution of an n-bit unipolar A/D converter is (2^{-n}) $V_{\text {REF }}$). Thus, the AD7574, an 8-bit A/D converter, can resolve analog voltages as small as ($1 / 256$) ($\mathrm{V}_{\text {REF }}$) when operated in a unipolar mode. When operated in a bipolar mode, the resolution is ($1 / 128$)
($\mathrm{V}_{\mathrm{REF}}$). Resolution does not imply accuracy. Usable resolution is limited by the differential nonlinearity of the A / D converter.

RELATIVE ACCURACY: Relative accuracy is the deviation of the ADC's actual code transition points from a straight line
drawn between the devices' measured zero and measured full scale transition points. Relative accuracy, therefore, is a measure of code position.
DIFFERENTIAL NONLINEARITY: Differential nonlinearity in an ADC is a measure of the size of an anlog voltage range associated with any digitial output code. As such, differential nonlinearity specifies code width (usable resolution). An ADC with a specified differential nonlinearity of $\pm \mathbf{n}$ bits will exhibit codes ranging in width from lLSB -n LSB to lLSB +n LSB. A specified differential nonlinearity of less than ± 1 LSB guarantees no-missing-codes operation.

TIMING \& CONTROL OF THE AD7574

STATIC RAM INTERFACE MODE

Table I and Figure 1 show the truth table and timing requirements for AD7574 operation as a static RAM.
A convert start is initiated by executing a memory WRITE instruction to the address location occupied by the AD7574 (once conversion has started, subsequent memory WRITES have no effect). A data READ is performed by executing a memory READ instruction to the AD7574 address location.
$\overline{\text { BUSY }}$ must be HIGH before a data READ is attempted, i.e. the total delay between a convert start and a data READ must be at least as great as the AD7574 conversion time. The delay

can be generated by inserting NOP instructions (or other program instructions) between the WRITE (start convert) and READ (read data) operations. Once BUSY is HIGH (conversion complete), a data READ is performed by executing a memory READ instruction to the address location occupied by the AD7574. The dara readout is destructive, i.e, when RD returns HIGH, the converter is internally reset.

The RAM interface mode uses distinctly different commands to start conversion (memory WRITE) or read the data (memory READ). This is in contrast to the ROM mode where a memory READ causes a data READ and a conversion restart.

Table I. Truth Table, Static RAM Mode

Figure 1. Static RAM Mode Timing Diagram

ROM INTERFACE MODE

Table II and Figure 2 show the truth table and timing requirements for interfacing the AD7574 like Read Only Memory.
$\overline{\mathrm{CS}}$ is held LOW and converter operation is controlled by the $\overline{\mathrm{RD}}$ input. The AD7574 $\overline{\mathrm{RD}}$ input is derived from the decoded device address. MEMRD should be used to enable the address decoder in 8080 systems. VMA should be used to enable the address decoder in 6800 systems. A data READ is initiated by executing a memory READ instruction to the AD7574 address location. The converter is automatically restarted when $\overline{\mathrm{RD}}$

returns HIGH. As in the RAM mode, attempting a data READ before $\overline{\text { BUSY }}$ is HIGH will result in incorrect data being read.
The advantage of the ROM mode is its simplicity. The major disadvantage is that the data obtained is relatively poorly defined in time inasmuch as executing a data READ automatically starts a new conversion. This problem can be overcome by executing two READs separated by NO-OPS (or other program instructions) and using only the data obtained from the second READ.

Table II. Truth Table, ROM Mode

AD7574 INPUTS		AD7574 OUTPUTS		AD7574 OPERATION
$\overline{\mathrm{CS}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{BUSY}}$	$\mathrm{DB}_{7}-\mathrm{DB}_{0}$	
$\begin{aligned} & \mathbf{L} \\ & \mathbf{L} \end{aligned}$	7	+	HIGH Z \rightarrow DATA DATA \rightarrow HIGH Z	DATA READ RESET AND START NEW CONVERSION
$\begin{aligned} & L \\ & L \end{aligned}$	2	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { HIGH Z } \\ & \text { HIGH Z } \end{aligned}$	NO EFFECT, CONVERTER BUSY NOT ALLOWED, CAUSES INCORRECT CONVERSION

device address is subsequently used to drive the AD7574 $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ inputs. $\overline{\mathrm{BUSY}}$ is connected to the microprocessor READY input.
When the AD7574 is NOT addressed, the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ inputs are HIGH. Conversion is initiated by executing a memory READ to the AD7574 address. $\overline{\text { BUSY }}$ subsequently goes LOW (forcing the μ P READY input LOW) placing the $\mu \mathrm{P}$ in a WAIT state. When conversion is complete ($\overline{\mathrm{BUSY}}$ is HIGH) the $\mu \mathrm{P}$ completes the memory READ.
Do not attempt to perform a memory WRITE in this mode, since three - state bus conflicts will arise.

Figure 3. Slow Memory Mode Timing Diagram ($\bar{C} \bar{S}$ and $\overline{R D}$ Tied Together)

Table III. Truth Table, Slow Memory Mode

AD7574 INPUTS	AD7574 OUTPU'S		AD7574 OPFERATION
$\overline{\mathrm{CS}} \& \overline{\mathrm{RD}}$	$\overline{\text { BUSY }}$	$\mathrm{DB}_{7}-\mathrm{DB}_{0}$	
H	H	HIGHI 7.	NOT SELECTED
ㄴ	$\mathrm{H}^{\text {L }} \mathrm{L}$	HIGIL	START CONVERSION
L.	L	HIGIE	CONVERSION IN PROGRESS, $\mu \mathrm{PIN}$ WAIT STATE
L	\square	HIEII 7. \rightarrow DATA	CONVERSION COMPLETE: μ P READS DATA
\square	1	DATA \rightarrow IIJGH 2	CONVERTER RESET AND DESELECTED
H	H	HIGH Z	NOT SFLFCTED

GENERAL CIRCUIT INFORMATION

BASIC CIRCUIT DESCRIPTION

The AD7574 uses the successive approximations technique to provide an 8 -bit parallel digital output. The control logic was designed to provide easy interface to most microprocessors. Most applications require only passive clock components (R \& C), a -10 V reference, and +5 V power.

Figure 4. AD7574 Functional Diagram

Figure 4 shows the AD7574 functional diagram. Upon receipt of a start command either via the $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ pins, $\overline{\mathrm{BUSY}}$ goes low indicating conversion is in progress. Successive bits, starting with the most significant bit (MSB) are applied to the input of a DAC. The comparator determines whether the addition of each successive bit causes the DAC output to be greater than or less than the analog input, A_{IN}. If the sum of the DAC bits is less than $A_{I N}$, the trial bit is left ON, and the next smaller bit is tried. If the sum is greater than $A_{I N}$, the trial bit is turned OFF and the next smaller bit is tried.

Each successively smaller bit is tried and compared to $A_{\text {IN }}$ in this manner until the least significant bit (LSB) decision has been made. At this time BUSY goes HIGH (conversion is complete) indicating the successive approximation register contains a valid representation of the analog input. The $\overline{\mathrm{RD}}$ control (see the previous page for details) can then be exercised to activate the three-state buffers, placing data on the $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ data output pins. $\overline{\mathrm{RD}}$ returning HIGH causes the clock oscillator to run for 1 cycle, providing an internal ADC reset (i.e. the SAR is loaded with code 10000000).

DAC CIRCUIT DETAILS

The current weighting D/A converter is a precision multiplying DAC. Figure 5 shows the functional diagram of the DAC as used in the AD7574. It consists of a precision Silicon Chromium thin film $\mathrm{R} / 2 \mathrm{R}$ ladder network and 8 N -channel MOSFET switches operated in single-pole-double - throw.
The currents in each $2 R$ shunt arm are binarily weighted, i.e. the current in the MSB arm is $V_{\text {REF }}$ divided by $2 R$, in the second arm is $V_{\text {REF }}$ divided by 4 R , etc. Depending on the DAC logic input (A/D output) from the successive approximation register, the current in the individual shunt arms is steered either to $\mathrm{A}_{\mathrm{GND}}$ or to the comparator summing point.

Figure 5. D/A Converter As Used In AD7574

OPERATING THE AD7574

APPLICATION HINTS

1. TIMING \& CONTROL

In the AD7574 when a conversion is finished the fresh data must be read before a new conversion can be started. Failure to observe the timing restrictions of Figures 1,2 or 3 may cause the AD7574 to change interface modes. For example, in the RAM mode, holding $\overline{\mathrm{CS}}$ LOW too long after $\overline{\mathrm{RD}}$ goes HIGH will cause a new convert start (i.e. the converter moved into the ROM mode).
2. LOGIC DEGLITCHING IN uP APPLICATIONS

Unspecified states on the address bus (due to different rise and fall times on the address bus) can cause glitches at the AD7574 $\overline{\mathrm{CS}}$ or $\overline{\mathbf{R D}}$ terminals. These glitches can cause unwanted convert starts, reads, or resets. The best way to avoid glitches is to gate the address decoding logic with RD or WR (8080) or VMA (6800) when in the ROM or RAM mode. When in the slow -memory mode, the ALE (8085) or SYNC (8080) signal should be used to latch the address.
3. INPUT LOADING AT V REF,$A_{\text {IN }}$ AND B BFS

To prevent loading errors due to the finite input resistance at the
VREF, $_{\text {A }}$ or B OFS pins, low impedance driving sources must be used (i.e. op amp buffers or low output- Z reference).
4. RATIOMETRIC OPERATION

Ratiometric performance is inherent to A/D converters such as the AD7574 which use a multiplying DAC weighting network. However,
the user should recognize that comparator limitations such as offset voltage, input noise and gain will cause degradation of the transfer characteristics when operating with reference voltages less than -10 V in magnitude.
5. OFFSET CORRECTION

Offset error in the transfer characteristic can be trimmed by offsetting the buffer amplifier which drives the AD7574 AIN pin (pin 4). This can be done either by summing a cancellation current into the amplifier's summing junction, or by tapping a voltage divider which sits between $V_{D D}$ and $V_{\text {REF }}$ and applying the tap voltage to the amplifier's positive input (an example of a resistive tap offset adjust is shown in Figure 10 a where $\mathrm{R}_{8}, \mathrm{Rg}_{9}$ and R_{10} can be used to offset the ADC).
6. ANALOG AND DIGITAL GROUND

It is recommended that $A_{G N D}$ and $D_{G N D}$ be connected locally to prevent the possibility of injecting noise into the AD7574. In systems where the $A_{G N D}{ }^{-D_{G N D}}$ intertie is not local, connect back - to -back diodes (IN914 or equivalent) between the AD7574 AGND and DGND pins.
7. INITIALIZATION AFTER POWER - UP

Execute a memory READ to the AD7574 address location, and subsequently ignore the data. The AD7574 is internally reset when reading out data, i.e. the data readout is destructive.

CLOCK OSCILLATOR

The AD7574 has an internal asynchronous clock oscillator which starts upon receipt of a convert start command, and ceases oscillating when conversion is complete.
The clock oscillator requires an external R and C as shown in Figure 6. Nominal conversion times versus $R_{C L K}$ and $C_{C L K}$ is shown in Figure 7a. The curves shown in Figure 7a are applicable when operating in the RAM or slow-memory interface modes. When operating in the ROM interface mode, add $2 \mu \mathrm{~s}$ to the typical conversion time values shown.

The AD7574 is guaranteed to provide transfer accuracy to published specifications for conversion times down to $15 \mu \mathrm{~s}$, as indicated by the unshaded region of Figure 7a. Conversion times faster than 15μ s can cause transfer accuracy degradation.

OPERATION WITH EXTERNAL CLOCK

For applications requiring a conversion time close to or equal to $15 \mu \mathrm{~s}$, an external clock is recommended. Using an external clock precludes the possibility of converting faster than $15 \mu \mathrm{~s}$ (which can cause transfer accuracy degradation) due to temperature drift - as may be the case when using the internal clock oscillator.
Figure 7b shows how the external clock must be connected. The $\overline{\text { BUSY }}$ output of the AD7574 is connected to the threestate enable input of a 74125 three -state buffer. R_{1} is used as a pullup, and can be between $6 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. A 500 kHz clock will provide a conversion time of $15 \mu \mathrm{~s}$.
The external clock should be used only in the static-RAM or slow - memory interface mode, and not in the ROM mode.
Timing constraints for external clock operation are as follows:

STATIC RAM MODE

1. When initiating a conversion, $\overline{C S}$ should go LOW on a positive clock edge to provide optimum settling time for the MSB.
2. A data READ can be initiated any time after $\overline{\mathrm{BUSY}}=1$.

SLOW-MEMORY MODE

1. When initiating a conversion, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ should go LOW
on a positive clock edge to provide optimum settling time for the MSB.

Figure 6. Connecting $R_{C L K}$ and $C_{C L K}$ To CLK Oscillator

Figure 7a. Typical Conversion Time vs. Temperature For Different $R_{C L K}$ and $C_{C L K}$ (Applicable to RAM and SlowMemory Modes. For ROM Mode add 2μ s to values shown)

Figure 7b. External Clock Operation (Static RAM and Slow- Memory Mode)

UNIPOLAR BINARY OPERATION

Figures 8 a and 8 b show the analog circuit connections and typical transfer characteristic for unipolar operation. An AD584 is used as the -10 V reference.
Calibration is as follows:

OFFSET

Offset must be trimmed out in the signal conditioning circuitry used to drive the signal input terminals shown in Figure 8a. An example of an offset trim is shown in Figure 10a, where R_{8}, R_{9} and R_{10} comprise a simple voltage tap which is applied to the amplifier's positive input.

Note 1: R_{1} and R_{2} can be omitted if gain trim is not required

Figure 8a. AD7574 Unipolar (OV to +10 V) Operation (Output Code is Straight Binary)

1. Apply -39.1 mV (1 LSB) to the input of the buffer amplifier used to drive R_{1} (i.e. +39.1 mV at R_{1}).
2. While performing continuous conversions, adjust the offset potentiometer (described above) until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and the LSB (DB_{0}) flickers.
GAIN (FULL SCALE)
Offset adjustment must be performed before gain adjustment.
3. Apply -9.961 V to the input of the buffer amplifier used to drive R_{1} (i.e. +9.961 V at R_{1}).
4. While performing continuous conversions, adjust trim pot R_{2} until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are HIGH and the $\mathrm{LSB}\left(\mathrm{DB}_{0}\right)$ flickers.

Note: Approximate bit weights are shown for illustration. Nominal bit weight for a -10 V reference is $\approx 39.1 \mathrm{mV}$

Figure 8b. Nominal Transfer Characteristic For Unipolar Circuit of Figure 8a

BIPOLAR (OFFSET BINARY) OPERATION

Figures 9a and 9b illustrate the analog circuitry and transfer characteristic for bipolar operation. Output coding is offset binary. As in unipolar operation, offset correction can be performed at the buffer amplifier used to drive the signal input terminals of Figure 9a (Resistors $\mathrm{R}_{8}, \mathrm{R}_{9}$ and R_{10} in Figure 10a show how offset trim can be done at the buffer amplifier).
Calibration is as follows:

1. Adjust R_{6} and R_{7} for minimum resistance across the potentiometers.
2. Apply +10.000 V to the buffer amplifier used to drive the

3. While performing continuous conversions, trim R_{6} or R_{7} (whichever required) until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and the LSB $\left(\mathrm{DB}_{0}\right)$ flickers.

Note 1: R_{1} and R_{2} can be omitted if gain trim is not required

Figure 9a. AD7574 Bipolar (-10V to +10V) Operation (Output Code is Offset Binary)
4. Apply $0 V$ to the buffer amplifier used to drive the signal input terminals.
5. Doing continuous conversions, trim the offset circuit of the buffer amplifier until the ADC output code flickers between 01111111 and 10000000 .
6. Apply +10.000 V to the input of the buffer amplifier (i.e. -10.000 V as applied to R_{6}).
7. Doing continuous conversions, trim R_{2} until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and the LSB (DB_{0}) flickers.
8. Apply -9.922 V to the input of the buffer amplifier (i.e. +9.922 V at the input side of R_{6}).
9. If the ADC output code is not 11111110 ± 1 bit, repeat the calibration procedure.

Note: Approximate bit weights are shown for illustration. Nominal bit weight for $\pm 10 \mathrm{~V}$ full scale is $\approx 78.1 \mathrm{mV}$

Figure 9b. Nominal Transfer Characteristic Around Major Carry for Bipolar Circuit of Figure 9a

OPERATING THE AD7574

BIPOLAR (COMPLEMENTARY OFFSET

BINARY) OPERATION

Figure 10a shows the analog connections for complementary offset binary operation. The typical transfer characteristic is shown in Figure 10b. In this bipolar mode, the ADC is fooled into believing it is operated in a unipolar mode - i.e. the +10 V to -10 V analog input is conditioned into a 0 to +10 V signal range. $\mathbf{R}_{\mathbf{2}}$ is the gain adjust, while $\mathrm{R}_{\mathbf{g}}$ is the offset adjust.
Calibration is as follows (adjust offset before gain):
offset

1. Apply OV to the analog input shown in Figure 10a.

Notes:

1. R_{1} and R_{2} can be omitted if gain trim is not required
2. R_{8}, R_{g} and R_{10} can be omitted if offset trim is not required
3. $R_{6}\left\|R_{8}\right\| R_{10}=5 \mathrm{k} \Omega$. If R_{8}, R_{9} and R_{10} not used, make $R_{6}=5 \mathrm{k} \Omega$

Figure 10a. AD7574 Bipolar Operation (-10 V to +10 V) (Output Code is Complementary Offset Binary)
2. While performing continuous conversions, adjust \mathbf{R}_{9} until the converter output flickers between codes 01111111 and 10000000.

GAIN (FULL SCALE)

1. Apply -9.922 V across the analog input terminals shown in Figure 10a.
2. While performing continuous conversions, adjust $\mathbf{R}_{\mathbf{2}}$ until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are HIGH and the LSB $\left(\mathrm{DB}_{0}\right)$ flickers between HIGH and LOW.

Note: Approximate bit weights are shown for illustration. Nominal bit weight for $\pm 10 \mathrm{~V}$ full scale is $\approx 78.1 \mathrm{mV}$

Figure 10b. Nominal Transfer Characteristic Around Major Carry for Bipolar Circuit of Figure 10a

MECHANICAL INFORMATION

OUTLINE DIMENSIONS
Dimensions are shown in inches and (mm).

18 PIN PLASTIC DIP

Notes:

1. Lead no. 1 identified by dot or notch.
2. Dimensions in mm (in.).
3. Leads are solder plated KOVAR or ALLOY 42.

18 PIN CERAMIC DIP

